Wednesday, January 28, 2009

Double group


























Double groups


When analyzing splitting of energy levels in external potential using group theory, one may have the problem of half integer angular moment, because the wavefunctions change with rotation of 360 degree. Here we should use so called double group.

The double group consists two the original group G and its product with operation R (rotation with 2\pi degree), which is why it is called double group.

Here are my collections

C3v' (C3v)

E
R
C32
C3R
C3
C32R
σv1
σv
2
σv3
σv1R

σv
2R

σv3R
Pseudo
vector
polar vector
A1
1
1
1
1
1
1

z
A2
1
1
1
1
-1
-1
Sz

E3/2+1
-1
1
-1
i
-i


E3/2-1
-1
1
-1
-i
i


E
2
2
-1
-1
0
0
(Sx,Sy)
(x,y)
E1/2
2
-2
-1
1
0
0












IR product table

A1A2E3/2+E3/2-EE1/2
A1








A2
A1E3/2-E3/2+E
E1/2
E3/2+
E3/2-A2A1E1/2E
E3/2-
E3/2+A1A2E1/2E
E
E
E1/2E1/2A1+A2+EE3/2++E3/2-+E1/2
E1/2
E1/2E
E
E3/2++E3/2-+E1/2A1+A2+E


Note that it is the direct product instead of ΓΓ, which is why E3/2+E3/2+=A2 instead of A1.

D2h' (D2h)

E
R
C2x
C2xR
C2y
C2yR
C2z
C2zR
i
i R
σh
σhR
σvx

σvxR
σvy

σvyR
Pseudo
vector
polar vector
Γ1+1
1
1
1
1
1
1
1
1
1


Γ2+1
1
-1
-1
1
1
1
1
-1
-1
Sz

Γ3+1
1
1
-1
-1
1
1
-1
1
-1
Sx

Γ4+1
1
-1
1
-1
1
1
-1
-1
1
Sy

Γ1-1
1
1
1
1
-1
-1
-1
-1
-1


Γ2-1
1
-1
-1
1
-1
-1
-1
1
1

z
Γ3-1
1
1
-1
-1
-1
-1
1
-1
1

x
Γ4-1
1
-1
1
-1
-1
-1
1
1
-1

y
Γ5+2
-2
0
0
0
2
-2
0
0
0


Γ5-2
-2
0
0
0
-2
2
0
0
0
















Product table

Γ1+Γ2+Γ3+Γ4+Γ1-Γ2-Γ3-Γ4-Γ5+Γ5-
Γ1+









Γ2+









Γ3+









Γ4+









Γ1-









Γ2-









Γ3-









Γ4-









Γ5+









Γ5-







Γ1+2+
3+
4+
Γ1+













D4' (D4)

D4' (16)







E



R



C4

C43R


C43

C4R


C2

C2R


2C2'

2C2'R


2C2''

2C2''R


Γ1

A1'



1



1



1



1



1



1



1



Γ2

A2'



1



1



1



1



1



-1



-1



Γ3

B1'



1



1



-1



-1



1



1



-1



Γ4

B2'



1



1



-1



-1



1



-1



1



Γ5

E1'



2



2



0



0



-2



0



0



Γ6

E2'



2



-2



√2

-√2

0



0



0



Γ7

E3'



2



-2



-√2

√2

0



0



0




O' (Oh)

O' (48)







E



R



4C3

4C32R



4C32

4C3R



3C2

3C2R



3C4

3C43R



3C43

3C4R



6C2'

6C2'R



Γ1

A1'



1



1



1



1



1



1



1



1



Γ2

A2'



1



1



1



1



1



-1



-1



-1



Γ3

E1'



2



2



-1



-1



2



0



0



0



Γ4

T1'



3



3



0



0



-1



1



1



-1



Γ5

T2'



3



3



0



0



-1



-1



-1



1



Γ6

E2'



2



-2



1



-1



0



√2

-√2

0



Γ7

E3'



2



-2



1



-1



0



-√2

√2

0



Γ8

G'



4



-4



-1



1



0



0



0



0






No comments: