Wednesday, January 28, 2009

Double group


























Double groups


When analyzing splitting of energy levels in external potential using group theory, one may have the problem of half integer angular moment, because the wavefunctions change with rotation of 360 degree. Here we should use so called double group.

The double group consists two the original group G and its product with operation R (rotation with 2\pi degree), which is why it is called double group.

Here are my collections

C3v' (C3v)

E
R
C32
C3R
C3
C32R
σv1
σv
2
σv3
σv1R

σv
2R

σv3R
Pseudo
vector
polar vector
A1
1
1
1
1
1
1

z
A2
1
1
1
1
-1
-1
Sz

E3/2+1
-1
1
-1
i
-i


E3/2-1
-1
1
-1
-i
i


E
2
2
-1
-1
0
0
(Sx,Sy)
(x,y)
E1/2
2
-2
-1
1
0
0












IR product table

A1A2E3/2+E3/2-EE1/2
A1








A2
A1E3/2-E3/2+E
E1/2
E3/2+
E3/2-A2A1E1/2E
E3/2-
E3/2+A1A2E1/2E
E
E
E1/2E1/2A1+A2+EE3/2++E3/2-+E1/2
E1/2
E1/2E
E
E3/2++E3/2-+E1/2A1+A2+E


Note that it is the direct product instead of ΓΓ, which is why E3/2+E3/2+=A2 instead of A1.

D2h' (D2h)

E
R
C2x
C2xR
C2y
C2yR
C2z
C2zR
i
i R
σh
σhR
σvx

σvxR
σvy

σvyR
Pseudo
vector
polar vector
Γ1+1
1
1
1
1
1
1
1
1
1


Γ2+1
1
-1
-1
1
1
1
1
-1
-1
Sz

Γ3+1
1
1
-1
-1
1
1
-1
1
-1
Sx

Γ4+1
1
-1
1
-1
1
1
-1
-1
1
Sy

Γ1-1
1
1
1
1
-1
-1
-1
-1
-1


Γ2-1
1
-1
-1
1
-1
-1
-1
1
1

z
Γ3-1
1
1
-1
-1
-1
-1
1
-1
1

x
Γ4-1
1
-1
1
-1
-1
-1
1
1
-1

y
Γ5+2
-2
0
0
0
2
-2
0
0
0


Γ5-2
-2
0
0
0
-2
2
0
0
0
















Product table

Γ1+Γ2+Γ3+Γ4+Γ1-Γ2-Γ3-Γ4-Γ5+Γ5-
Γ1+









Γ2+









Γ3+









Γ4+









Γ1-









Γ2-









Γ3-









Γ4-









Γ5+









Γ5-







Γ1+2+
3+
4+
Γ1+













D4' (D4)

D4' (16)







E



R



C4

C43R


C43

C4R


C2

C2R


2C2'

2C2'R


2C2''

2C2''R


Γ1

A1'



1



1



1



1



1



1



1



Γ2

A2'



1



1



1



1



1



-1



-1



Γ3

B1'



1



1



-1



-1



1



1



-1



Γ4

B2'



1



1



-1



-1



1



-1



1



Γ5

E1'



2



2



0



0



-2



0



0



Γ6

E2'



2



-2



√2

-√2

0



0



0



Γ7

E3'



2



-2



-√2

√2

0



0



0




O' (Oh)

O' (48)







E



R



4C3

4C32R



4C32

4C3R



3C2

3C2R



3C4

3C43R



3C43

3C4R



6C2'

6C2'R



Γ1

A1'



1



1



1



1



1



1



1



1



Γ2

A2'



1



1



1



1



1



-1



-1



-1



Γ3

E1'



2



2



-1



-1



2



0



0



0



Γ4

T1'



3



3



0



0



-1



1



1



-1



Γ5

T2'



3



3



0



0



-1



-1



-1



1



Γ6

E2'



2



-2



1



-1



0



√2

-√2

0



Γ7

E3'



2



-2



1



-1



0



-√2

√2

0



Γ8

G'



4



-4



-1



1



0



0



0



0






Tuesday, January 13, 2009

Irreducible representation notations

Irreducible representation notations



Bethe
BSW
EWK
Oh

(m3m)






Γ1
A1g


Γ1'
A1u


Γ2
A2g


Γ2'
A2u


Γ12
Eg


Γ12'
Eu


Γ15'
T1g


Γ15
T1u


Γ25'
T2g


Γ25
T2u
Td
(-43m)






Γ1Γ1A1


Γ2Γ2A2


Γ3Γ12E


Γ4Γ25T1


Γ4Γ15T2





D2d
(-42m)






Γ1A1



Γ2A2



Γ3B1



Γ4B2



Γ5E






C2v

Γ1A1



Γ3A2



Γ2B1



Γ4B2


Thursday, January 8, 2009

Abbreviate








Note on abbrievation


To me, there are two cases we have to do abbrievation:
1) when taking notes
2) when writing a computer program

In the 1) case, we want o gain time by abbreviating words, while in 2) case, we want to avoid clutter in our codes. In both cases, the caveat is to make sure that you will be able to recognize these abbreviations afterward without confusion. We should also take advantage of the context.

Here are a list of tricks (some may not apply for computer programmings)



Original
Abbreviation
Symbolsequal
=

*
important

w/
with



Standard
for example
e.g.



1st syllabledem
democracy

integer
int



1st syllable+first letter of the seconddemo
demonstration



or so much you can recongnizeintro
introduction



Omit vowels
level
lvl



Use the first and last syllables
energy
engy



use the first and last letters
feet
ft








9.Us the first and last syllable

engy = energy