Double groups
When analyzing splitting of energy levels in external potential using group theory, one may have the problem of half integer angular moment, because the wavefunctions change with rotation of 360 degree. Here we should use so called double group.
The double group consists two the original group G and its product with operation R (rotation with 2\pi degree), which is why it is called double group.
Here are my collections
C3v' (C3v)
E | R | C32 C3R | C3 C32R | σv1 σv2 σv3 | σv1R σv2R σv3R | Pseudo vector | polar vector | |
A1 | 1 | 1 | 1 | 1 | 1 | 1 | z | |
A2 | 1 | 1 | 1 | 1 | -1 | -1 | Sz | |
E3/2+ | 1 | -1 | 1 | -1 | i | -i | ||
E3/2- | 1 | -1 | 1 | -1 | -i | i | ||
E | 2 | 2 | -1 | -1 | 0 | 0 | (Sx,Sy) | (x,y) |
E1/2 | 2 | -2 | -1 | 1 | 0 | 0 | ||
IR product table
A1 | A2 | E3/2+ | E3/2- | E | E1/2 | |
A1 | ||||||
A2 | A1 | E3/2- | E3/2+ | E | E1/2 | |
E3/2+ | E3/2- | A2 | A1 | E1/2 | E | |
E3/2- | E3/2+ | A1 | A2 | E1/2 | E | |
E | E | E1/2 | E1/2 | A1+A2+E | E3/2++E3/2-+E1/2 | |
E1/2 | E1/2 | E | E | E3/2++E3/2-+E1/2 | A1+A2+E |
Note that it is the direct product instead of Γ†Γ, which is why E3/2+E3/2+=A2 instead of A1.
D2h' (D2h)
E | R | C2x C2xR | C2y C2yR | C2z C2zR | i | i R | σh σhR | σvx σvxR | σvy σvyR | Pseudo vector | polar vector | |
Γ1+ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Γ2+ | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | Sz | |
Γ3+ | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | Sx | |
Γ4+ | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | Sy | |
Γ1- | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | ||
Γ2- | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | z | |
Γ3- | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | x | |
Γ4- | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | y | |
Γ5+ | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | ||
Γ5- | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | ||
Product table
Γ1+ | Γ2+ | Γ3+ | Γ4+ | Γ1- | Γ2- | Γ3- | Γ4- | Γ5+ | Γ5- | |
Γ1+ | ||||||||||
Γ2+ | ||||||||||
Γ3+ | ||||||||||
Γ4+ | ||||||||||
Γ1- | ||||||||||
Γ2- | ||||||||||
Γ3- | ||||||||||
Γ4- | ||||||||||
Γ5+ | ||||||||||
Γ5- | Γ1++Γ2+ +Γ3++Γ4+ | Γ1+ | ||||||||
D4' (D4)
D4' (16) | E | R | C4 C43R | C43 C4R | C2 C2R | 2C2' 2C2'R | 2C2'' 2C2''R | |
Γ1 | A1' | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Γ2 | A2' | 1 | 1 | 1 | 1 | 1 | -1 | -1 |
Γ3 | B1' | 1 | 1 | -1 | -1 | 1 | 1 | -1 |
Γ4 | B2' | 1 | 1 | -1 | -1 | 1 | -1 | 1 |
Γ5 | E1' | 2 | 2 | 0 | 0 | -2 | 0 | 0 |
Γ6 | E2' | 2 | -2 | √2 | -√2 | 0 | 0 | 0 |
Γ7 | E3' | 2 | -2 | -√2 | √2 | 0 | 0 | 0 |
O' (Oh)
O' (48) | E | R | 4C3 4C32R | 4C32 4C3R | 3C2 3C2R | 3C4 3C43R | 3C43 3C4R | 6C2' 6C2'R | |
Γ1 | A1' | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Γ2 | A2' | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 |
Γ3 | E1' | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 |
Γ4 | T1' | 3 | 3 | 0 | 0 | -1 | 1 | 1 | -1 |
Γ5 | T2' | 3 | 3 | 0 | 0 | -1 | -1 | -1 | 1 |
Γ6 | E2' | 2 | -2 | 1 | -1 | 0 | √2 | -√2 | 0 |
Γ7 | E3' | 2 | -2 | 1 | -1 | 0 | -√2 | √2 | 0 |
Γ8 | G' | 4 | -4 | -1 | 1 | 0 | 0 | 0 | 0 |