Saturday, July 26, 2008

Summary of 3d atomic orbitals





Symmetry
Orbitals
Free atom
E1
m=2,
Ψ3,2,2 = (1 / 81√(2π)) (Z/a)7/2 r2 e-Zr/3a sin2θ ei2φ
m=1,
Ψ3,2,1 = (√2 / 81√π) (Z/a)7/2 r2 e-Zr/3a sinθ cosθ e
m=0,
Ψ3,2,0 = (1 / 81√(6π)) (Z/a)7/2 r2 e-Zr/3a (3cos2θ -1)
m=-1,
Ψ3,2,-1 = (√2 / 81√π) (Z/a)7/2 r2 e-Zr/3a sinθ cosθ e-iφ
m=-2,
Ψ
3,2,-2 = (1 / 81√(2π)) (Z/a)7/2r2 e-Zr/3a sin2θ e-i2φ
Octahedral / TetrahedralOh / Td
E1 (eg)
x2-y2=(3,2,2)+(3,2,-2)
sin2θ cos2φ
z2=(3,2,0)
(3cos2θ-1)

E2 (t2g)
xy=(3,2,2)-(3,2,-2)
sin2θ sin2φ
yz=(3,2,1)-(3,2,-1)
sinθ cosθ sinφ
xz=(3,2,1)+(3,2,-1)
sinθ cosθ cosφ
Triangular bipyramid symmetry
E1
x2-y2,
xy

E2
xz, yz

E3
z2




Angular momentum operator:
Lz=(ħ/i)∂/φ

No comments: