Saturday, July 26, 2008

Summary of 3d atomic orbitals





Symmetry
Orbitals
Free atom
E1
m=2,
Ψ3,2,2 = (1 / 81√(2π)) (Z/a)7/2 r2 e-Zr/3a sin2θ ei2φ
m=1,
Ψ3,2,1 = (√2 / 81√π) (Z/a)7/2 r2 e-Zr/3a sinθ cosθ e
m=0,
Ψ3,2,0 = (1 / 81√(6π)) (Z/a)7/2 r2 e-Zr/3a (3cos2θ -1)
m=-1,
Ψ3,2,-1 = (√2 / 81√π) (Z/a)7/2 r2 e-Zr/3a sinθ cosθ e-iφ
m=-2,
Ψ
3,2,-2 = (1 / 81√(2π)) (Z/a)7/2r2 e-Zr/3a sin2θ e-i2φ
Octahedral / TetrahedralOh / Td
E1 (eg)
x2-y2=(3,2,2)+(3,2,-2)
sin2θ cos2φ
z2=(3,2,0)
(3cos2θ-1)

E2 (t2g)
xy=(3,2,2)-(3,2,-2)
sin2θ sin2φ
yz=(3,2,1)-(3,2,-1)
sinθ cosθ sinφ
xz=(3,2,1)+(3,2,-1)
sinθ cosθ cosφ
Triangular bipyramid symmetry
E1
x2-y2,
xy

E2
xz, yz

E3
z2




Angular momentum operator:
Lz=(ħ/i)∂/φ

Wednesday, July 16, 2008

BandGapof3dTMOxides





Band gap of 3d transition metal oxides








 



Oxides



Xystal color



band gap (eV)



Oxides



Xystal color



band gap (eV)



Oxides



Xystal color



band gap (eV)



 



 



2+



 



 



3+



 



 



4+



 



3d0



 



 



 



Sc2O3



white



6



TiO2



white



3.2



3d1



 



 



 



Ti2O3



violet



4.08



VO2



blue-black



0.7



3d2



TiO



dark



0



V2O3



black



0.2



 CrO2



black



0



3d3



VO



black, grey, or green



0



Cr2O3



green



3



MnO2



gray to black



3.4



3d4



 



 



 



 



 



 



 



 



 



3d5



MnO



green



3.6-4.3



Fe2O3



red-brown



Xystal 2.0/film 2.7



 



 



 



3d6



FeO



black



 



 



 



 



 



 



 



3d7



CoO



grey or olive green



2.4



 



 



 



 



 



 



3d8



NiO



green



3.0-4.3



 



 



 



 



 



 




 








As we can see that the color does not correlate with band gap, except for the case that the material is always black when the gap is lower than 1.8 eV. This is because the optical gap we normally refer is actually charge transfer gap which bare huge absorption strength which color properties can be determined by the excitation that has much less absorption strength, e.g. on-site forbidden excitation. See this post.

Monday, July 14, 2008

Polaron reference

Holstein T, Annals of physics, V8,p 325 (1959)
Li ZZ, Theory of Solid State Physics, p 294, (1985)
Yuri M. Galperin, Introduction to Modern Solid State Physics,

Patterson J.,Bailey B., Solid-State Physics, Introduction to the theory, Springer Verlag (2007) p213.

Friday, July 11, 2008

Electron phonon coupling


coupling strength

α/2=Δ/ħωL

where Δ is the deformation energy.

Tuesday, July 1, 2008

Added name

name added 06/27/2008