Friday, December 11, 2009

Lattice constant


Lattice constant of some triangular lattice materials



Material
Lattice Constant
Crystal
Structure


LuFe2O4
3.441 (LuO) / 2.086 (FeO)



SiC
a=3.086;
c=15.117
Wurtzite

Si
5.43095Diamond

C
3.56683Diamond

GaNa=3.189;
c=5.185
Wurtzite

ZnO3.249P 63 m c

SiO2
4.916Quantz









Effective number of oscillators and B...

Effective number of oscillators and Born effective charge


The operational definition of effective number of oscillators is:

n_{eff}=\frac{2}{\pi\omega_p^2}\int_{\omega_1}^{\omega_2}{\epsilon_2\omega d\omega


eq=n_{eff}=\frac{2}{\pi\omega_p^2}\int_{\omega_1}^{\omega_2}{\epsilon_2\omega d\omega}
where 

\omega_p^2=\frac{e^2}{V_0m\epsilon_0}

eq=\omega_p^2=\frac{e^2}{V_0m\epsilon_0}


here e is electronic charge, V_0 is the unit cell volume, m is the reduced mass of the oscillator and \epsilon_0 is the vacuum dielectric constant.

If we introduce (Born) effective charge q_{eff}, we also get

n_{eff} =\frac{Nq_{eff}^2V_0\mu\epsilon_0}{e^2V_0m\epsilon_0} = N(\frac{q_{eff}}{e})^2 \frac{m}{\mu}


eq=n_{eff} =\frac{q_{eff}^2V_0\mu\epsilon_0}{Ne^2V_0m\epsilon_0} = N(\frac{q_{eff}}{e})^2 \frac{m}{\mu}